Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(40): 27764-27771, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37731833

RESUMO

Side-chain-functionalized aliphatic polyesters are promising as functional biodegradable polymers. We have investigated ring-opening reactions of γ-carbonyl-substituted ε-caprolactones (gCCLs) to obtain poly(ε-caprolactone) (PCL) analogues. Organic catalysts and Sn(Oct)2 often used for the ring-opening polymerization (ROP) of ε-caprolactone (CL) have been explored to find the conditions for the formation of polymeric products of gCCLs. We confirmed the consumption of gCCLs in all catalyzed reactions. However, chain propagation hardly occurs, as the propagating species are preferentially transformed to α-substituted five-membered lactones when the substituents are linked by ester or not sterically hindered. Intramolecular cyclization to form thermodynamically stable five-membered lactones releases alcohols and amines, serving as nucleophiles for the subsequent ring opening of other gCCLs. Thus, apparent chain reactions are realized for continuous consumption of gCCLs. The reaction preference remains unchanged independent of the catalysts, although the reactions of the amide-linked gCCLs by acidic catalysts are slightly mitigated. Finally, copolymerization of CL and a gCCL catalyzed by diphenyl phosphate has been investigated, which enables the chain propagation reaction to yield the linear oligomers of PCL analogues containing up to 16 mol% of gCCL units. This study contributes to understanding the chemistry of ring-opening reactions of substituted lactones for designing functional degradable polymers.

2.
Langmuir ; 39(15): 5486-5494, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37026866

RESUMO

Polylactide (PLA) crystallizes to form extended-chain crystals in a Langmuir monolayer because crystallization is accelerated on the water surface. This is a unique situation where chain packing can be analyzed by simply measuring the lamellar thickness. Herein, star-shaped poly(l-lactide)s (PLLAs) with 2-12 arms were synthesized through the polymerization of l-lactide with various polyols as initiators, and their crystallization behavior in a monolayer was studied via atomic force microscopy. The PLLAs comprising 2-4 arms crystallized with all arms aligned in the same direction and being folded at the central polyol unit. Meanwhile, the PLLAs comprising 6 and 12 arms crystallized with both halves of the arms extended from the center to the opposite directions, most likely due to the steric hindrance of the crowded arms. Considering that the PLLAs crystallized from a once-formed condensed amorphous state during compression, they have a strong tendency to crystallize with the arms aligned in the same direction. The crystallization rate of star-shaped PLAs is known to reduce compared with that of a linear PLA even if the number of arms is as few as 2. This should be closely related to the unique crystallization behavior of the star-shaped PLLAs with the arms aligned in the same direction.

3.
Nat Commun ; 13(1): 3520, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725726

RESUMO

Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate protrusive and contractile dynamics, the latter of which are induced in concert with myosin II bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular deformation. Here, we show that contractile dynamics can eventually disturb cell-cell junction contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility induces the formation of abnormal actin protrusions at the shortening junctions, which causes decrease in E-cadherin levels at the adherens junctions and mislocalization of myosin II at the junctions before they enough shorten, compromising completion of junction shortening. Overexpressing E-cadherin restores myosin II distribution closely placed at the junctions and junction contraction. Our results suggest that contractility both induces and perturbs junction contraction and that the attenuation of such perturbations by Pak3 facilitates persistent junction shortening.


Assuntos
Actinas , Quinases Ativadas por p21 , Actinas/fisiologia , Junções Aderentes/fisiologia , Caderinas , Células Epiteliais , Retroalimentação , Junções Intercelulares , Miosina Tipo II , Junções Íntimas , Quinases Ativadas por p21/genética
4.
Genes Genet Syst ; 96(3): 129-139, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34148895

RESUMO

In various coastal areas of Japan, naturalized radish populations are observed. Radish is a cruciferous plant and exhibits self-incompatibility, involving a system controlled by a single locus with multiple S alleles. Although the S allele diversity of radish cultivars and wild radishes has been characterized, the S allele distribution in naturalized populations has not yet been analyzed in relation to the positions of the plants in situ. Here, we show the S allele distribution in naturalized radish populations of Yakushima, a small island in the East China Sea, with positions of the plants. Radish plants were sampled in coastal areas in Yakushima, and their S alleles were detected and characterized. Most of the S alleles had been previously identified in radish cultivars. However, four novel S alleles, which may be unique to Yakushima, were also found. Moreover, seeds in siliques from plants growing in the study areas were sampled, and S allele determination in DNA extracted from these seeds suggested that the plants had exchanged their pollen among their close neighbors. There was also a problem in that the PCR amplification of some SRK alleles was difficult because of their sequence diversity in the naturalized populations, as occurs in cultivars. Our results suggest that the exchange of S alleles between cultivars and naturalized populations occurs and that S alleles in naturalized populations are highly diverse. The methodology established in our study should be applicable to other self-incompatible species to dissect the diversity of S allele distribution in naturalized populations.


Assuntos
Brassicaceae , Raphanus , Alelos , Brassicaceae/genética , Japão , Pólen , Raphanus/genética
5.
ACS Biomater Sci Eng ; 7(2): 472-481, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400868

RESUMO

Polymers that are biocompatible and degradable are desired for tissue engineering approaches in the treatment of vascular diseases, especially for those involving small-diameter blood vessels. Herein, we report the compatibility of a newly developed glycerol-based aliphatic polycarbonate possessing simple methoxy side groups, named poly(5-methoxy-1,3-dioxan-2-one) (PMDO), with blood cells and plasma proteins as well as its susceptibility to hydrolysis. As a consequence of the organocatalytic ring-opening polymerization (ROP) of a methoxy-functionalized cyclic carbonate derived from glycerol, PMDO with a sufficiently high molecular weight (Mn 14 kg/mol) and a narrow distribution (D̵M 1.12) was obtained for evaluation as a bulk biomaterial. This study demonstrates for the first time the organocatalytic ROP of a glycerol-based cyclic carbonate in a controlled manner. Compared with the clinically applied aliphatic polycarbonate poly(trimethylene carbonate) (PTMC), PMDO inhibits platelet adhesion by 33% and denaturation of fibrinogen by 23%. Although the wettability of PMDO based on water contact angle was almost comparable to those of PTMC and poly(ethylene terephthalate), the reason for the inhibited platelet adhesion and protein denaturation appeared to be related to the presence of specific hydrated water formed in the hydrated polymer. The improved hydration of PMDO also enhanced the susceptibility to hydrolysis, with PMDO demonstrating a slightly higher hydrolytic property than PTMC. This simple glycerol-based aliphatic polycarbonate has the following benefits: bio-based characteristics of glycerol and improved blood compatibility and hydrolytic biodegradability stemming from moderate hydration of the methoxy side groups.


Assuntos
Glicerol , Polímeros , Carbonatos , Hidrólise , Cimento de Policarboxilato
6.
Biomater Sci ; 7(6): 2288-2296, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31017174

RESUMO

Cationic aliphatic polycarbonates bearing primary ammonium side chains have been developed with relatively high molecular weights and controlled macromolecular architectures. These polycarbonates exhibit reasonable antimicrobial activity against Gram-negative and Gram-positive bacteria. The prepared homopolymers could be effective against Gram-negative bacteria whose growth is usually inhibited by copolymers with hydrophobic comonomer units when quaternary ammonium salts (QAS) are used at the cationic side chains. A methoxyethyl (ME) side chain was explored as a comonomer unit for modulating biological activities, besides conventional hydrophobic side chains including ethyl and benzyl groups. In contrast to the ethyl side chain that increases both antimicrobial and hemolytic activities, the ME side chain serves to enhance the antimicrobial activity, but suppresses the hemolytic activity. This could be attributed to the unique characteristics of an aliphatic polycarbonate bearing a ME side chain: hemocompatibility, cell adhesion property, and selective interactions with proteins. The benefits of blood compatibility of the cationic aliphatic polycarbonates with the use of the primary ammonium side chains have been reported for the first time. The polycarbonate main chain is subjected to hydrolysis, which reduces the inherent cytotoxicity of polycations. This hydrolytic property is specific to these primary ammonium-tagged polycarbonates and could be an advantage over previously reported QAS-tagged antimicrobial polycarbonates.


Assuntos
Compostos de Amônio/química , Antibacterianos/química , Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Cimento de Policarboxilato/química , Cimento de Policarboxilato/farmacologia , Animais , Antibacterianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Hidrólise , Testes de Sensibilidade Microbiana , Cimento de Policarboxilato/toxicidade , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 506(3): 510-515, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30361090

RESUMO

The Drosophila Toll-1 receptor is involved in embryonic development, innate immunity, and tissue homeostasis. Currently, as a ligand for the Toll-1 receptor, only Spätzle (Spz) has been identified and characterized. We previously reported that Drosophila larva-derived tissue extract contains ligand activity for the Toll-1 receptor, which differs from Spz based on the observation that larval extract prepared from spz mutants possessed full ligand activity. Here, we demonstrate that Spz5, a member of the Spz family of proteins, functions as a ligand for the Toll-1 receptor. Processing of Spz5 by Furin protease, which is known to be important for ligand activity of Spz5 to Toll-6, is not required for its function to the Toll-1 receptor. By generating a spz5 null mutant, we further showed that the Toll-1 ligand activity of larva-derived extract is mainly derived from Spz5. Finally, we found a genetic interaction between spz and spz5 in terms of developmental processes. This study identified a novel ligand for the Drosophila Toll-1 receptor, providing evidence that Toll-1 is a multi-ligand receptor, similar to the mammalian Toll-like receptor.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Toll-Like/metabolismo , Animais , Epistasia Genética , Larva/metabolismo , Ligantes , Proteólise , Extratos de Tecidos
8.
ACS Macro Lett ; 7(3): 295-299, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632920

RESUMO

A new pH-responsive hydrogel biomaterial, that is composed of solely two popular biocompatible materials, oligodeoxynucleotides (ODN) and polyethylene glycol (PEG) have been prepared. Merely five deoxycytidine residues were elongated to the ends of linear or 4-arm PEG in ×1000 larger scale than conventional systems by using liquid-phase DNA synthesis technique, and applied them as a macromonomer for the preparation of hydrogels. The syntheses of the conjugates are simply elongating ODN onto the ends of PEG as a semisolid phase substrate using standard phosphoramidite chemistry. The resulting dC5-PEG conjugates gave quite stable and stiff hydrogels triggered by the formation of a unique DNA quadruplex, i-motif. Introduction of only one chemical linkage between two linear conjugates resulted in unexpectedly high thermal stabilities for the melting temperatures of i-motifs themselves. Nonlinearly improved rheological properties compared to the original linear conjugates were also observed, probably because of topological entanglement between macromonomers of fused circles.

9.
Nanomedicine ; 14(1): 165-172, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974393

RESUMO

Low molecular weight cationic compounds were synthesized from re-purposed poly(ethylene teraphthalate) (PET) and used to self-assemble into high aspect ratio supramolecular nanofibers for encapsulation and delivery of anionic antibiotics. The antibiotic piperacillin/tazobactam (PT) was successfully loaded into the nanofibers through ionic interaction between anionic PT and the cationic nanofibers without loss of the nanofiber features. These PT-loaded nanofibers demonstrated high loading efficiency and sustained delivery for PT. The antimicrobial activity of PT-loaded nanofibers remained potent towards both Gram-positive and Gram-negative bacteria. Importantly, in a P. aeruginosa-infected mouse skin wound model, the treatment with the PT-loaded nanofibers was more effective than free PT for wound healing as evidenced by the significantly lower P. aeruginosa counts at the wound sites and histological analysis. This strategy can be applied to deliver a variety of anionic antibiotics for improved treatment efficacy of various infections.


Assuntos
Antibacterianos/administração & dosagem , Cátions/química , Nanofibras/química , Polietilenotereftalatos/química , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/química , Portadores de Fármacos , Reposicionamento de Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Cicatrização/efeitos dos fármacos
10.
Biomacromolecules ; 18(11): 3834-3843, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28972745

RESUMO

We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents.


Assuntos
Plásticos Biodegradáveis/química , Adesão Celular/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Cimento de Policarboxilato/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/farmacologia , Plaquetas/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Cimento de Policarboxilato/síntese química , Cimento de Policarboxilato/farmacologia , Stents , Enxerto Vascular/métodos
11.
Chem Asian J ; 12(18): 2388-2392, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28777486

RESUMO

A new class of hydrogels utilizing DNA (DNA quadruplex gel) has been constructed by directly and symmetrically coupling deoxynucleotide phosphoramidite monomers to the ends of polyethylene glycols (PEGs) in liquid phase, and using the resulting DNA-PEG-DNA triblock copolymers as macromonomers. Elongation of merely four deoxyguanosine residues on PEG, which produces typically ≈10 grams of desired DNA-PEG conjugates in one synthesis, resulted in intelligent and biodegradable hydrogels utilizing DNA quadruplex formation, which are responsive to various input signals such as Na+ , K+ , and complementary DNA strand. Gelation of DNA quadruplex gels takes place within a few seconds upon the addition of a trigger, enabling free formation just like Ca+ -alginate hydrogels or possible application as an injectable polymer (IP) gel. The obtained hydrogels show good thermal stability and rheological properties, and even display self-healing ability.


Assuntos
Quadruplex G , Hidrogéis/química , Polietilenoglicóis/química , Estrutura Molecular
12.
Nat Commun ; 4: 2861, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24316819

RESUMO

Efficient and pathogen-specific antifungal agents are required to mitigate drug resistance problems. Here we present cationic small molecules that exhibit excellent microbial selectivity with minimal host toxicity. Unlike typical cationic polymers possessing molecular weight distributions, these compounds have an absolute molecular weight aiding in isolation and characterization. However, their specific molecular recognition motif (terephthalamide-bisurea) facilitates spontaneous supramolecular self-assembly manifesting in several polymer-like properties. Computational modelling of the terephthalamide-bisurea structures predicts zig-zag or bent arrangements where distal benzyl urea groups stabilize the high-aspect ratio aqueous supramolecular assemblies. These nanostructures are confirmed by transmission electron microscopy and atomic force microscopy. Antifungal activity against drug-sensitive and drug-resistant strains with in vitro and in vivo biocompatibility is observed. Additionally, despite repeated sub-lethal exposures, drug resistance is not induced. Comparison with clinically used amphotericin B shows similar antifungal behaviour without any significant toxicity in a C. albicans biofilm-induced mouse keratitis model.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Polímeros/química , Polímeros/farmacologia , Antifúngicos/síntese química , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Polímeros/síntese química
13.
ACS Macro Lett ; 2(4): 332-336, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35581761

RESUMO

We have successfully designed and synthesized polycarbonate-based brush polymers with detachable, disulfide-linked side chains. A polycarbonate backbone with disulfide-linked, hydroxyl-terminated pendant side chains was first prepared. Poly(trimethylene carbonate) or poly(l-lactide) brushes were then grafted from the terminal hydroxyl groups using an acid- or base-catalyzed ring-opening polymerization. Inspired by how cells use glutathione to mediated reduction of disulfides in cytoplasmic proteins, we also demonstrate that the side chains are easily detached under mild reductive conditions (e.g., with 1,4-dithiothreitol). l-Lactide and trimethylene carbonate were selected as model building blocks for the polymer grafts because of their commercial availability and routine use in polymeric drug delivery systems.

14.
Angew Chem Int Ed Engl ; 52(2): 674-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23161823

RESUMO

Fighting the resistance: biodegradable and injectable/moldable hydrogels with hierarchical nanostructures were made with broad-spectrum antimicrobial activities and biofilm-disruption capability. They demonstrate no cytotoxicity in vitro, and show excellent skin biocompatibility in animals. These hydrogels have great potential for clinical use in prevention and treatment of various multidrug-resistant infections.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Microscopia Eletrônica
15.
J Phys Chem A ; 116(51): 12389-98, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23241219

RESUMO

We describe investigations with B3LYP density functional theory to probe mechanisms for the organocatalyzed depolymerization of poly(ethylene) terephthalate (PET) into ester and amide products. These investigations utilize model systems involving the trans-esterification and amidation of methylbenzoate (MB) with ethylene glycol (EG), ethylenediamine (EDA), and ethanolamine (EA) organocatalyzed by 1,5,7-triazabicyclododecene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Mechanisms for reactions in which TBD acts as the lone catalyst have been compared with pathways in which TBD and DBU catalyze these processes with an additional molecule of the amine or alcohol acting as a cocatalyst. Calculations suggest that the combination of an organocatalyst with a molecule of an alcohol or amine cocatalyst is slightly more activating than a lone catalyst. Our results predict that nucleophilic attack is the rate-determining step in reactions involving EDA and EG and that TBD is a better catalyst than DBU in the amidation of MB with EDA; in addition, both organocatalysts activate alcohols more than amines during nucleophilic attack. Amidation and trans-esterification possess similar barriers for reactions involving EA; but the amide, which is the thermodynamic product, is preferentially formed instead of the ester.

16.
ACS Nano ; 6(10): 9191-9, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22998441

RESUMO

With the increased prevalence of antibiotic-resistant infections, there is an urgent need for innovative antimicrobial treatments. One such area being actively explored is the use of self-assembling cationic polymers. This relatively new class of materials was inspired by biologically pervasive cationic host defense peptides. The antimicrobial action of both the synthetic polymers and naturally occurring peptides is believed to be complemented by their three-dimensional structure. In an effort to evaluate shape effects on antimicrobial materials, triblock polymers were polymerized from an assembly directing terephthalamide-bisurea core. Simple changes to this core, such as the addition of a methylene spacer, served to direct self-assembly into distinct morphologies-spheres and rods. Computational modeling also demonstrated how subtle core changes could directly alter urea stacking motifs manifesting in unique multidirectional hydrogen-bond networks despite the vast majority of material consisting of poly(lactide) (interior block) and cationic polycarbonates (exterior block). Upon testing the spherical and rod-like morphologies for antimicrobial properties, it was found that both possessed broad-spectrum activity (Gram-negative and Gram-positive bacteria as well as fungi) with minimal hemolysis, although only the rod-like assemblies were effective against Candida albicans.


Assuntos
Anti-Infecciosos/administração & dosagem , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Relação Estrutura-Atividade
17.
ACS Macro Lett ; 1(1): 19-22, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578473

RESUMO

(-)-Sparteine is a proven organocatalyst for the ring-opening polymerization (ROP) of l-lactide, which affords polymers of controlled molecular weight and narrow polydispersity. The recent worldwide shortage of (-)-sparteine has necessitated the identification of simple and cost-effective replacement ROP catalysts. A series of commercially available molecules was first identified through molecular modeling and then subsequently investigated for polymerizing l-lactide. The modeling proved very useful at predicting spatial relationships and nitrogen geometries that greatly aided in the rapid identification of various alkyl amines as alternative organocatalysts.

18.
Biomaterials ; 32(23): 5505-14, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21529935

RESUMO

Water-soluble, thermoresponsive block copolymers based on a biodegradable platform were synthesized by the ring opening polymerization of cyclic carbonate monomers functionalized with hydrophilic and hydrophobic groups for application as nanocarriers in medicine. The approach based on cyclic carbonate monomers derived from 2,2-bis(methylol)propionic acid (bis-MPA) allowed a simple and versatile route to functional monomers capable of undergoing ring opening polymerization (ROP). The resulting polymers possessed the predicted molecular weights based on the molar ratio between monomers to initiators and the narrow molecular weight distributions. Transmittance measurement for aqueous polymer solutions provided an evidence for temperature-responsiveness with lower critical solution temperature (LCST) in the range of 36 °C-60 °C, depending on the molecular weight of hydrophilic poly(ethylene glycol) (PEG) chains, compositions of copolymers, molar ratios of hydrophilic to hydrophobic monomers in the corona, and the hydrophobic core. This study showed synthetic advancement toward the design and preparation of biodegradable thermoresponsive polymers with extremely low CMC values for injectable drug delivery systems. TRC350-10,30,60, which possessed an LCST of 36 °C in PBS, was identified as a useful model polymer. Paclitaxel, an anti-cancer drug, was loaded into the micelles efficiently, giving rise to nano-sized particles with a narrow size distribution. Paclitaxel release from the micelles was faster, and cellular uptake of the micelles was higher at the body temperature (i.e. 37 °C) as compared to a temperature below the LCST. While the polymer was not cytotoxic, paclitaxel-loaded micelles killed HepG2 human liver carcinoma cells more efficiently at the body temperature as compared to free paclitaxel and paclitaxel-loaded micelles at the temperature below the LCST. These micelles are ideally suited to deliver anti-cancer drugs to tumor tissues through local injection.


Assuntos
Carbonatos/química , Sistemas de Liberação de Medicamentos/métodos , Micelas , Nanoestruturas/química , Cimento de Policarboxilato , Polímeros/química , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Etanol/química , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Células HEK293 , Células Hep G2 , Temperatura Alta , Humanos , Hidrocarbonetos Bromados/química , Luz , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/síntese química , Pirenos/química , Espalhamento de Radiação , Espectrometria de Fluorescência , Temperatura de Transição
19.
Nat Chem ; 3(5): 409-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21505501

RESUMO

Macromolecular antimicrobial agents such as cationic polymers and peptides have recently been under an increased level of scrutiny because they can combat multi-drug-resistant microbes. Most of these polymers are non-biodegradable and are designed to mimic the facially amphiphilic structure of peptides so that they may form a secondary structure on interaction with negatively charged microbial membranes. The resulting secondary structure can insert into and disintegrate the cell membrane after recruiting additional polymer molecules. Here, we report the first biodegradable and in vivo applicable antimicrobial polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. We demonstrate that the nanoparticles disrupt microbial walls/membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and fungi, without inducing significant haemolysis over a wide range of concentrations. These biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, are promising as antimicrobial drugs, and can be used to treat various infectious diseases such as MRSA-associated infections, which are often linked with high mortality.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Nanoestruturas , Bactérias/ultraestrutura , Membrana Celular/metabolismo , Fungos/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão
20.
J Control Release ; 152(1): 120-6, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21277917

RESUMO

Polycarbonates provide an attractive option for use as gene delivery vectors owing to their biocompatibility and ease of incorporating functional moieties. In this study, we described an approach to synthesize cationic polymers with well-defined molecular weights and narrow polydispersities by an organocatalytic ring-opening polymerization of functional cyclic carbonates containing alkyl halide side chains, followed by a subsequent functionalization step with bis-tertiary amines designed to facilitate gene binding and endosomal escape. The cationic polycarbonate effectively condensed DNA at low N/P ratios, generating nanoparticles (83 to 124 nm in diameter) with positive zeta potentials (~27 mV). In addition, reporter gene expression efficiencies in HepG2, HEK293, MCF-7 and 4T1 cell lines were high even in the presence of serum. Importantly, the polycarbonate delivery agent demonstrated minimal cytotoxicity at the optimal N/P ratios determined to confer high gene expression efficiencies. Therefore, this biodegradable polymer is presented as a promising non-viral vector for gene delivery.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Cimento de Policarboxilato/química , Cátions/química , Vetores Genéticos , Células HEK293 , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...